Development of Metallic Sensory Alloys
نویسنده
چکیده
Existing nondestructive evaluation (NDE) technologies are inherently limited by the physical response of the structural material being inspected and are therefore not generally effective at the identification of small discontinuities, making the detection of incipient damage extremely difficult. One innovative solution to this problem is to enhance or complement the NDE signature of structural materials to dramatically improve the ability of existing NDE tools to detect damage. To address this need, a multifunctional metallic material has been developed that can be used in structural applications. The material is processed to contain second phase sensory particles that significantly improve the NDE response, enhancing the ability of conventional NDE techniques to detect incipient damage both during and after flight. Ferromagnetic shape-memory alloys (FSMAs) are an ideal material for these sensory particles as they undergo a uniform and repeatable change in both magnetic properties and crystallographic structure (martensitic transformation) when subjected to strain and/or temperature changes which can be detected using conventional NDE techniques. In this study, the use of a ferromagnetic shape memory alloy (FSMA) as the sensory particles was investigated.
منابع مشابه
Development of new metallic alloys for biomedical applications.
New low modulus β-type titanium alloys for biomedical applications are still currently being developed. Strong and enduring β-type titanium alloy with a low Young's modulus are being investigated. A low modulus has been proved to be effective in inhibiting bone atrophy, leading to good bone remodeling in a bone fracture model in the rabbit tibia. Very recently β-type titanium alloys with a self...
متن کاملCorrosion fatigue of biomedical metallic alloys: mechanisms and mitigation.
Cyclic stresses are often related to the premature mechanical failure of metallic biomaterials. The complex interaction between fatigue and corrosion in the physiological environment has been subject of many investigations. In this context, microstructure, heat treatments, plastic deformation, surface finishing and coatings have decisive influence on the mechanisms of fatigue crack nucleation a...
متن کاملRecent Progress in Ti-Based Metallic Glasses for Application as Biomaterials
Ti-based bulk metallic glasses are of great interest in biomedical applications due to their high corrosion resistance, excellent mechanical properties and good biocompatibility. This article reviews recent progress in the development of Ti-based metallic glasses for the application as biomaterials. Ti-based (TiZrCuPd, TiZrCuPdSn, and TiZrCuPdNb) bulk metallic glasses without toxic a...
متن کاملCharge distributions in metallic alloys: a charge-excess functional theory approach.
The distribution of local charge (DLC) excesses in metallic alloys, previously obtained as a result of the analysis of order N electronic structure calculations, is derived from a variational principle. A phenomenological charge-excess functional theory is obtained which is determined by three concentration dependent, material specific parameters that can be obtained from ab initio calculations...
متن کاملMicrostructural aspects of the Captek alloy for porcelain-fused-to-metal restorations.
CaptekTM (Precious Chemical USA Inc., Apopka, Florida) is a new, innovative development in dental materials. It is a dental alloy that can be defined as a composite material because it is internally composed of two different alloys. CaptekTM is a high gold content alloy (88% by weight) and is used in porcelain-fused-to-metal dental crowns and bridges. Composite metals containing metallic matrix...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010